It is becoming increasingly common for scientists to uncover new functions for molecules they thought they understood. A case in point is the discovery that key regulators of immunity, major histocompatibility class I (MHC class I) molecules, play an unexpected role in neurodevelopment. Dr. Daniel Kaufman and his research team from the University of California, Los Angeles, have demonstrated that over-expression of MHC class I molecules affects hippocampal morphology and function (Wu et al. 2010).
MHC class I molecules consist of three main components: a heavy chain with a peptide binding groove, B2 microglobulin (B2M) and a degraded protein fragment. Conventionally, these molecules are associated with immune function. They integrate themselves into a cell's surface and display their degraded protein fragments extracellularly – making them easily detectable by immune system cells. If the degraded protein fragments are foreign antigens (e.g., from a bacteria or virus), the immune system mounts an attack against them when they are encountered elsewhere in the body.
MHC class I molecules were once thought to play a minor role in the nervous system. However, recent studies have shown that they are widely expressed by neurons, and their deficiency causes a variety of neurological problems. Mice deficient in these molecules have abnormal neural circuitry in the hippocampus, altered motor learning and defects in the dorsal lateral geniculate nucleus (dLNG) – the part of the brain that processes information from the retina. Additionally, paired immunoglobulin-like receptor B (PirB), an MHC class I molecule receptor classically associated with the innate immune system, has been shown to play a role in the synaptic plasticity of the visual cortex.
Because previous studies had focused on the effects of MHC class I molecule deficiency on neurodevelopment, Dr. Kaufman's team focused its research on the neurodevelopmental effects of MHC class I molecule over-expression. From the Scripps Institute, the researchers obtained a mouse harboring a transgene consisting of a neuron-specific enolase promoter linked to a Db heavy chain cDNA (matching the endogenous H-2D MHC class I molecule allele of the mouse). They introgressed the transgene from this "NSE-Db" mouse into the C57BL/6J (B6J, 000664) background, producing a B6J NSE-Db mouse.
Dr Kaufman's team confirmed that the dLGN morphology of B2m-deficient B6.129P2-B2mtm1Unc/J (002087) mice is abnormal and determined that it is also abnormal in B6J NSE-Db mice. Additionally, they found that some hippocampal regions of B6J NSE-Db mice have deficient neural circuitry characterized by poor synaptic connections and an abnormally low number of principal neurons. B6J NSE-Db mice also have defective neuro-repair responses.
In summary, the Kaufman team demonstrated a role for MHC class I molecules in normal brain function by showing that their over-expression impairs neurodevelopment in mice. Future studies of the role of these molecules in the nervous system may improve therapies for nervous system disorders in humans.
Wu Z-P, Washburn L, Bilousova TV, Boudzinskaia M, Escande-Beillard N, Querubin J, Dang H, Xie C-W, Tian J, Kaufman DL. 2010. Enhanced neuronal expression of major histocompatibility complex class I leads to aberrations in neurodevelopment and neurorepair, J Neuroimmunol [Epub ahead of print].
We use cookies to personalize our website and to analyze web traffic to improve the user experience. You may decline these cookies although certain areas of the site may not function without them. Please refer to our privacy policy for more information.