williams adam

The Williams Lab

Adam Williams, Assistant Professor

Principal Investigator: Adam Williams, Ph.D.

The Jackson Laboratory
Farmington, CT

Bridges immunology, genomics research and bioinformatics to develop a deeper understanding of asthma pathogenesis.

Full Scientific Report

Blood transcriptional profiling of lymphocytes to enable asthma diagnosis and subtyping

Transcriptional profiling of blood represents a minimally invasive method to assess immune function. Non-coding RNAs display restricted expression patterns and serve as unique cellular markers. Blood transcriptional profiling that includes analysis of non-coding RNA has the potential to provide a more accurate definition of immune cell status in vivo.

Defining asthma subtypes

The traditional view of asthma as a Th2-mediated disease is now regarded as overly simplistic, and clinical trials blocking Th2 cytokines have yielded disappointing results, potentially due to mismatches between treatment modalities and the currently poorly defined asthma subtypes. We will therefore use transcriptional profiling of peripheral blood mononuclear cells (and potentially serum itself) to define asthma subtypes and to develop appropriate methods to pre-screen patients accurately.

Enabling earlier diagnosis of pediatric asthma

Re-educating the immune system to induce allergen tolerance potentially offers the best hope for curing asthma. Such treatments are most likely to work in children due to a limited period of allergen exposure; however, early diagnosis of asthma in children is difficult. Diagnostic methods to clearly identify and subtype asthma in children need to be developed. To this end, my laboratory will screen blood from pediatric samples to look for evidence of asthmatic gene expression signatures (as originally defined in adults). If successful, this will allow early identification of allergic susceptibility and initiation of appropriate treatment modalities.

LncRNAs as targets for therapeutic intervention

As lncRNAs typically display greater cell-type specific expression patterns than do proteins, lncRNA-directed therapeutics are predicted to cause fewer off-target effects. Airway delivery of locked nucleic acids (LNA) or small molecule inhibitors, to modulate lncRNA function, in combination with existing and/or novel therapies could significantly improve the treatment of asthma. However, before lncRNA-based therapies can be developed, we must first understand their biological function. My laboratory aims to identify, characterize and validate lncRNA-driven pathways active in allergy-driving helper T cells and airway epithelial cells that could hold promise as therapeutic targets in altering the aberrant immune responses underlying asthma.

The CRISPR/Cas9 genome-editing technology allows the rapid generation of genetically modified animals as well as controlled genetic modification in cell lines and primary cells. Therefore, to assess biological function, my laboratory will use this technology to delete candidate lncRNAs or introduce disease-associated polymorphisms in human cell lines and primary cells from healthy volunteers. LncRNAs that affect cellular development and/or function can form the foundation of future studies to develop potential therapeutics.