Ai32 mice express an improved channelrhodopsin-2/EYFP fusion protein following exposure to Cre recombinase. These mice can be used in optogenetic studies for rapid in vivo activation of excitable cells by illumination with blue light (450-490 nm).

A C57BL/6J congenic version of this strain is available as Stock No. 024109.

Donating Investigator
Hongkui Zeng, Allen Institute for Brain Science

Typically mice are recovered in 10-14 weeks. Contact Customer Service to place an order or for more information.
Ai32 mice homozygous for the Rosa-CAG-LSL-ChR2(H134R)-EYFP-WPRE conditional allele are viable and fertile. A loxP-flanked STOP cassette prevents transcription of the downstream ChR2(H134R)-EYFP fusion gene. Because this CAG promoter driven reporter construct was targeted for insertion into the Gt(ROSA)26Sor locus, ChR2(H134R)-EYFP expression is determined by which tissue(s) express Cre recombinase.

When bred to mice that express Cre recombinase, the resulting offspring will have the STOP cassette deleted in the cre-expressing tissues; resulting in expression of the ChR2(H134R)-EYFP fusion protein. ChR2(H134R)-EYFP expression following exposure to cre can be detected by EYFP fluorescence (and presumably by mRNA [in situ hybridization] and antibody staining [immunohistochemistry]; although this was not tested by the donating investigator).

The donating investigator reports Ai32 mice have no significant expression of ChR2(H134R)-EYFP prior to introduction of Cre recombinase. Importantly, very low levels of ChR2(H134R)-EYFP expression may be present before Cre recombination - but the ChR2(H134R)-EYFP expression levels after Cre recombination are significantly greater than those baseline levels. As such, it is recommended that researchers include Cre-negative Ai32 controls to establish the baseline ChR2(H134R)-EYFP levels in their experiments.

For characterization information, see images at the Allen Institute for Brain Science website (Ai32 images).

Of note, the FRT sites flanking the mutation allow for additional targeted replacement of the reporter sequences through Flp-mediated recombination if so desired. Similarly, the attB/attP-flanked selection cassette may be removed by introduction of the site-specific bacteriophage PhiC31 integrase if so desired.

The ChR2(H134R)-EYFP fusion protein is composed of a Chlamydomonas reinhardtii-derived channelrhodopsin-2 that harbors a gain-of-function H134R substitution fused in-frame with an enhanced yellow fluorescent protein. The ChR2(H134R) is designed to cause larger stationary photocurrents compared to ChR2. The bacterial opsins are retinal-binding proteins that combine a light-sensitive domain with an ion channel or pump; providing light-dependent ion transport, membrane potential alteration, and sensory functions to bacteria. This ChR2(H134R) functions as a blue light-driven cation channel that depolarizes the cell and causes action potentials. As such, illuminating ChR2(H134R)-expressing cells with blue light (450-490 nm) leads to rapid and reversible photostimulation of action potential firing activity in these cells.
Genotyping Protocols
Standard PCR: Gt(ROSA)26Sor(COP4-EGFP)
Genotyping resources and troubleshooting

Breeding Considerations
When maintaining a live colony, homozygous mice may be bred together.

Additional Breeding and Husbandry Support
Mating System
Homozygote x Homozygote

Citation
When using the Ai32 or Ai32(RCL-ChR2(H134R)/EYFP) mouse strain in a publication, please cite the originating article(s) and include JAX stock #012569 in your Materials and Methods section.

Animal Health Reports
Facility Barrier Level Descriptions
Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200
Pricing & Availability

Typically mice are recovered in 10-14 weeks. Contact Customer Service to place an order or for more information.

Domestic

CRYORECOVERY - DOMESTIC NOT-FOR-PROFIT & ACADEMIC PRICING

<table>
<thead>
<tr>
<th>SERVICE/PRODUCT</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryo Recovery</td>
<td>Heterozygous or wildtype for Gt(ROSA)26Sor<tm32.1(CAG-COP4*H134R/EYFP)Hze></td>
<td>$2,854.50</td>
</tr>
</tbody>
</table>

Related Products and Services

| Frozen Mouse Embryo | B6;129S-Gt(ROSA)26Sor<tm32(CAG-COP4*H134R/EYFP)Hze>/J Frozen | $2595.00 |

PAYMENT TERMS AND CONDITIONS

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.

THE JACKSON LABORATORY’S GENOTYPE PROMISE

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. **Therefore, we cannot guarantee a strain's phenotype will meet all expectations.** To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project. We do not guarantee breeding performance and therefore suggest that investigators order more than one breeding pair to avoid delays in their research.

Terms Of Use

TERMS OF USE
ADDITIONAL USE RESTRICTIONS APPLY

NOT AVAILABLE TO COMPANIES OR FOR COMMERCIAL USE

Use of MICE only available to non-profit entities.

LICENSING INFORMATION

Phone: 207-288-6470
Email: TechTran@jax.org

Related Strains

All

By Allele

By Gene

By Collection