Also Known As: mdx
These spontaneous Dmd^{mdx} mutant mice do not express dystrophin and may be useful for studying Duchenne muscular dystrophy.

Our preclinical efficacy testing services offer scientific expertise and an array of target-based and phenotype-based outcome measures, both in vivo and at endpoint, for flexible study designs and assay development in mouse models of Muscular Dystrophy. See our full service platform.

<table>
<thead>
<tr>
<th>Genetic Background</th>
<th>Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C57BL/10ScSn-Dmd^{mdx}/J</td>
<td>Contact Technical Support</td>
</tr>
<tr>
<td>Coisogenic, Spontaneous Mutation</td>
<td>(2019-04-29 00:00:00)</td>
</tr>
</tbody>
</table>

GENETIC OVERVIEW

<table>
<thead>
<tr>
<th>Allele Type</th>
<th>Gene Symbol</th>
<th>Gene Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous</td>
<td>Dmd</td>
<td>dystrophin, muscular dystrophy</td>
</tr>
</tbody>
</table>
The X-linked dystrophin gene (Dmd) is highly expressed in muscle cells and encodes a cytoskeletal protein which localizes to the inner face of the sarcolemma. Dystrophin molecules bind to cytoskeletal F-actin and transmembrane beta-dystroglycan as part of a complex, multimolecular unit that mediates signaling between the intracellular cytoskeleton and the extracellular matrix. The structure and localization also suggest that dystrophin is important for stabilizing the plasma membrane, particularly during contraction. The mdx mutation of Dmd is recessive and heterozygous females are visually indistinguishable from wild-type mice. Females homozygous and males hemizygous for the Dmd\(^{mdx}\) allele retain a normal lifespan and can survive up to two years. Like human patients who suffer from one of the most common neuromuscular diseases, Duchenne muscular dystrophy (DMD), the Dmd\(^{mdx}\) mutants do not express dystrophin and therefore have been routinely used as an animal model of the disease even though the resultant myopathy is much less severe compared to the human disease course.

Muscle from Dmd\(^{mdx}\) mutants is histologically normal early in postnatal development, but starting around 3 weeks muscle necrosis develops with some visible muscle weakness. Biochemical analysis of related pathologies includes elevated serum creatine kinase and pyruvate kinase levels, along with an accumulation of macrophages, both early markers of muscle degeneration. While skeletal limb muscles are characterized by a persistent and progressive degeneration and necrosis, this is offset by a regenerative response activated by satellite cells and muscle hypertrophy. The regenerating fibers are morphologically typified by small-caliber centrally nucleated fibers; nevertheless, the mice assume normal behavior. The muscles of Dmd\(^{mdx}\) mutants have an overall reduction in elasticity, making them more susceptible to injury due to lengthening-activation. Interestingly, the mutant leg muscles were found to initially develop normally, but the differentiation of regenerated myotubes into both fast and slow fiber types was significantly inhibited. The comparatively mild phenotype of the Dmd\(^{mdx}\) mice can, in part, be attributed to the compensatory function of the dystrophin-related protein utrophin, which is highly upregulated in regenerating muscle fibers in adult Dmd\(^{mdx}\) mutants. This functional redundancy was demonstrated in mice deficient for both of these sarcolemmal proteins where the observed muscular dystrophy was much more severe and
led to a premature death in the dystrophin/utrophin double mutants. Also, the muscle-specific transcription factor MYOD may also be involved in facilitating muscle regeneration in the mutant mice as Dmd^{mdx} mice also lacking MYOD exhibit a more severe dystrophy of the muscles. In contrast to limb muscles, the diaphragm muscles of Dmd^{mdx} mice do not undergo a significant regeneration phase such that the continuous dystrophy weakens these muscles with age. The specific twitch force, specific titanic force and maximum power are all reduced in the diaphragm of Dmd^{mdx} mutants.

Auditory function of Dmd^{mdx} mutants, as assessed by brainstem auditory evoked potentials, is altered leaving them more vulnerable to noise damage. In mouse cardiac myocytes, dystrophin colocalizes with L-type calcium channels; in Dmd^{mdx} mutants, the inactivation of these channels is reduced and voltage-dependant activation shifts to more positive potentials, providing evidence that the protein normally regulates calcium channel activity in cardiac tissue. In brain areas associated with learning, memory and cognitive tasks, dystrophin and its isoforms have been detected within postsynaptic specializations. In the Dmd^{mdx} mouse sympathetic superior cervical ganglion, postsynaptic nicotinic acetylcholine receptor complexes containing the alpha3 subtype are destabilized as assayed by immunocytochemical and immunoprecipitation techniques. That proper dystrophin function is linked in nervous tissue to synaptic ligand-gated ion channel organization raises intriguing possibilities regarding the pathologic mechanisms underlying the cognitive defects often seen in DMD patients. [reviewed by Watchko et al. 2002, Durbeej and Campbell 2002; Ahn and Kunkel 1993; Cook and Davisson 1991; Doolittle 1997; Monaco and Kunkel 1987; Tamura et al. 1993; Stevens and Faulkner 2000; Del Signore et al. 2002; Houzelstein et al. 1992; Sicinski et al. 1989; Deconinck et al. 1997; Grady et al. 1997; Earnshaw et al. 2002; Chen et al. 2002; D'Souza et al. 1995; Lynch et al. 2001; Carretta et al. 2001; Sadeghi et al. 2002; Lidov et al. 1995]

Nuclear opacity (cataracts) can be seen in the lens of one day old mice. A slight anterior subcapsular opacity is seen by four days progressing to complete anterior subcapsular opacity in 150 day old mice.
Genotyping Protocols

End Point Analysis: \textbf{DmdEnd Point}

Genotyping resources and troubleshooting

Breeding Considerations

\textbf{This strain is a challenging breeder.}

\textbf{Additional Breeding and Husbandry Support}

\textbf{Mating System}

Homozygote x Hemizygote

\textbf{Appearance}

black, affected

\textbf{Related Genotype:} \textit{a/a Dmd}^{mdx} / \textit{Dmd}^{mdx} \textit{or a/a Dmd}^{mdx} / \text{Y}

\textbf{Citation}

When using the mdx mouse strain in a publication, please cite the originating article(s) and include JAX stock #001801 in your Materials and Methods section.

\textbf{Animal Health Reports}

Facility Barrier Level Descriptions

- AX5 (Standard)
- RB07 (Maximum)

\textbf{Pricing & Availability}

\textbf{Sized to accommodate orders of up to 100 or more. Ask Customer Service for details.}

\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Live Mouse} & \textbf{SEX} & \textbf{GENOTYPE} & \textbf{PRICE} \\
\hline
\textbf{AGE} & & \textit{Dmd}^{mdx} & \\
\hline
4 weeks & Female & \text{Homozygous for Dmd}^{mdx} & \$132.11 \\
\hline
4 weeks & Male & \text{Hemizygous for Dmd}^{mdx} & \$132.11 \\
\hline
5 weeks & Female & \text{Homozygous for Dmd}^{mdx} & \$132.11 \\
\hline
\end{tabular}
<table>
<thead>
<tr>
<th>Weeks</th>
<th>SEX</th>
<th>Genotype</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Female</td>
<td>Homozygous for Dmd<sup>mdx</sup></td>
<td>$132.11</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>Homozygous for Dmd<sup>mdx</sup></td>
<td>$135.76</td>
</tr>
<tr>
<td>7</td>
<td>Female</td>
<td>Homozygous for Dmd<sup>mdx</sup></td>
<td>$139.41</td>
</tr>
<tr>
<td>7</td>
<td>Male</td>
<td>Homozygous for Dmd<sup>mdx</sup></td>
<td>$139.41</td>
</tr>
<tr>
<td>8</td>
<td>Female</td>
<td>Homozygous for Dmd<sup>mdx</sup></td>
<td>$143.06</td>
</tr>
<tr>
<td>8</td>
<td>Male</td>
<td>Homozygous for Dmd<sup>mdx</sup></td>
<td>$143.06</td>
</tr>
<tr>
<td>9</td>
<td>Female</td>
<td>Homozygous for Dmd<sup>mdx</sup></td>
<td>$146.71</td>
</tr>
<tr>
<td>9</td>
<td>Male</td>
<td>Homozygous for Dmd<sup>mdx</sup></td>
<td>$146.71</td>
</tr>
<tr>
<td>10</td>
<td>Female</td>
<td>Homozygous for Dmd<sup>mdx</sup></td>
<td>$150.36</td>
</tr>
<tr>
<td>10</td>
<td>Male</td>
<td>Homozygous for Dmd<sup>mdx</sup></td>
<td>$150.36</td>
</tr>
</tbody>
</table>

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.

The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project. We do not guarantee breeding performance and therefore suggest that investigators order more than one breeding pair to avoid delays in their research.

Terms Of Use

Licensing Information

Phone: 207-288-6470
Email: TechTran@jax.org

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCT(S)" means biological materials.
supplied by JACKSON, and their derivatives. "SERVICES" means projects conducted by JACKSON for other parties that may include but are not limited to the use of MICE or PRODUCTS. "RECIPIENT" means each recipient of MICE, PRODUCTS, or SERVICES provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE, PRODUCTS or SERVICES from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON’s prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED "AS IS". JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

Credit for PRODUCTS or SERVICES

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of PRODUCTS or SERVICES, JACKSON will, at its option, provide credit or replacement for the PRODUCT received or the SERVICES provided; JACKSON makes no other representations and this shall be the exclusive remedy of the purchaser. Please note specific policy for live mice.

Animal Care and Use for SERVICES

Consistent with the requirement for a written understanding regarding animal care and use, the JACKSON Animal Care and Use Committee will review the animal care and use protocol(s) associated with any SERVICES to be performed at JACKSON, and JACKSON shall have ultimate responsibility and authority for the care of animals while on site or in JACKSON custody.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS, or SERVICES, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS, or SERVICES from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE, PRODUCTS or SERVICES are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or SERVICES. In addition, special terms and conditions of sale of certain MICE, PRODUCTS, or SERVICES may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and SERVICES by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or SERVICES shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or SERVICES by JACKSON.

Related Strains

- All
- By Allele
- By Gene
All Related Strains