

Thawing, Propagation, and Freezing Protocol for JAX human iPSC lines

(KOLF2.1J and gene edited derivatives)

Each cryovial purchase from JAX contains $\sim 0.5 \times 10^6$ cells in $500 \mu l$.

Cryovials should be stored in liquid N2 upon receipt. The cryovials are shipped on dry ice or in a dry shipper (outside of US, Canada, and Puerto Rico). Prior to storage, confirm the cryovial 10-digit barcodes match the values adjacent to the Product# in the packing slip (Figure 1).

Figure 1: Cryovial tube format and barcode ID

JAX human iPSC lines are delivered in screwcap cryotubes with unique 10-digit numbers on the label. The packing slip will have this 10-digit number adjacent to the Product Number, enabling the user to identify which tube contains which genetically engineered cell line.

Reagent list

Thawing & Propagation

- StemFlex[™] Medium (Cat# A3349401; Gibco Life Technologies): Carefully review the vendor-provided "User Guide" before use as the working media is the composition of two components.
- RevitaCell™ Supplement (Cat# A26445-01, Gibco Life Technologies) referred to as RevitaCell in protocol
- Synthemax II-SC Substrate (Cat# 3535, Corning) referred to as Synthemax in protocol
- Sterile Distilled Water (Cat# 15230-204, Gibco Life Technologies)

- ReLeSR™ (Cat# 05872, STEMCELL Technologies)
- DPBS (Cat# 14190144, Gibco Life Technologies)
- Cell Lifter (Cat# CLS3008, Corning)
- 6-well Tissue Culture-treated Dish
- 10cm Tissue Culture-treated Dish
- 5ml Self-Standing Sterile Transport Tube (Cat# 22-010-1223, Globe Scientific)

Freezing

- ACCUTASE™ (Cat# 07920, STEMCELL Technologies)
- DMSO Hybri-Max[™] (Cat# D2650, Sigma) referred to as DMSO in protocol
- KnockOut[™] Serum Replacement (Cat# 10828028, Gibco) referred to as KOSR in protocol
- Vital Dye (i.e. Trypan Blue)
- Cryovials

Protocol

Cryo-Recovery (Single Frozen Cryovial into a single well of 6-well TC dish)

Before Starting:

Prepare 1mg/ml Synthemax stock solution (40X) by dissolving 10mg lyophilized Synthemax II-SC in 10ml sterile water (can be stored at 4° C)

- 1. For every clone to be thawed, treat a single well of a 6-well plate with 2ml sterile water + 50µl of 1mg/ml Synthemax stock (40X stock) and let stand at room temperature (RT) in a tissue culture (TC) hood for 2 hours. Aspirate the Synthemax solution from wells after 2 hours of incubation.
- 2. For every clone to be thawed, prepare 4 ml of StemFlex media containing RevitaCell (1:100 dilution of 100X RevitaCell stock) and let warm to RT.
- 3. Remove the cryovial from the liquid nitrogen tank.
- 4. Hold the tube in the hood in your hand to thaw.
- 5. Once thawed, use a 200 µl pipet tip to transfer the entire 0.5 ml cell thawed suspension to a 5ml tube (Cat# 22-010-1223, Globe Scientific) 1 ml StemFlex + RevitalCell media.
- 6. Centrifuge for 5 min at 300 x g to pellet the cells.
- 7. Aspirate the media, taking care not to disturb the cell pellet and resuspend the cell pellet in 0.5 ml StemFlex + RevitaCell by gentle trituration.
- 8. Transfer the cell suspension to one well of a Synthemax-treated 6-well plate containing 2.5 ml StemFlex + RevitaCell and swirl gently.
- 9. Place 6-well plate in 37°C/5% CO₂ incubator.
- 10. Next day, change the media to StemFlex (<u>without</u> RevitaCell) and then every 2 days thereafter. (Note: See Figure 2 to appreciate the cell morphology change)
- 11. When the plate is 80% confluent (3-4 days), freeze into 5 x 0.5 vials OR pass 1:15 to expand the cell line stock (See Passage and Expansion). (Note: We recommend passaging 1:15 to 3 x 10cm plates to allow the subsequent freezing of many cryovials to ensure future experiments can access an inventory of low passage stocks.)

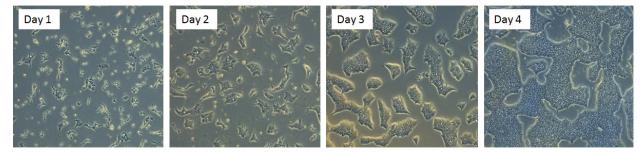


Figure 2: iPSC Morphology in Culture

Growth and morphology of KOLF2-C1 human iPS cells after thawing single cells.

Following exposure to a ROCK inhibitor (Revitacell) for 1 day, individual iPS cells will appear elongated. Once ROCK inhibitor is removed from the media on Day 1 and by Day 4, the iPS cells revert to a normal morphology and are ready for freezing or passaging. Non-enzymatic dissociation to small clumps, e.g., with ReLeSR, is used for subsequent passaging of cells. At a dilution of 1:15, the cells will reach confluency in 3-4 days.

Thawing, Propagation, and Freezing Protocol for JAX human iPSC lines

micetech@jax.org 1.800.422.6423 (USA) 1.207.288.5845 (International)

Passage & Expansion (6-well to 3 x 10cm dishes)

- 1. Prepare 10cm TC plates: *For each clone in a single well of 6-well dish*, coat 3 x 10cm TC dishes with 8 ml of Synthemax per dish. Let stand in a TC hood for 2 hours. (Note: Less than 6 ml will bead up leaving the plate uncoated in places.)
- 2. Prewarm 36 ml StemFlex media to room temperature in TC hood.
- 3. Wash the 6-well dish well with 1X PBS. Add 2 ml ReLeSR to each well and incubate in the TC hood for 5 min.
- 4. Aspirate ReLeSR and add 3 ml StemFlex per well. Scrape well and triturate cells several times to break cells into small clumps. (Note: The number of times depends on speed of pipetting and bore of pipette. Check cells under microscope. Pipette additional times if required.)
- 5. Transfer 1ml of cell suspension to Synthemax-coated dishes containing 9 ml StemFlex media (3 x 10cm TC plate). (Note: To get even plating of clumps, swirl dishes in one direction then the other. Finish with up and down and side-to-side motion.)
- 6. Change media after 2 days with new StemFlex media. When cells reach 80% confluency, plan to freeze the cells (~3-4 days post-plating).

Freezing

- 1. Pre-warm ACCUTASE at room temperature.
- 2. Pipette old media from 10cm plate into sterile conical tube.
- 3. Wash 10cm plate with 8 ml of PBS and then aspirate PBS.
- 4. Add 6ml of ACCUTASE to each 10cm plate.
- 5. Incubate plate(s) for 7 minutes in 37°C incubator.
- 6. Aspirate ACCUTASE (Note: Cells on Synthemax will still adhere to dish during aspiration).
- 7. Add 5ml of collected media from sterile tube to 10cm plate.
- 8. Using a cell lifter, thoroughly scrape plate to dislodge all cells.
- 9. Gently pipette media up and down 3 times while washing plate surface with the media/cell mixture, and transfer to sterile conical tube.
- 10. Count cells using a haemocytometer (include a vital dye such as Trypan blue)
- 11. Spin down cells, and aspirate media.
- 12. Resuspend cells in appropriate volume of freezing media (90% KOSR + 10% DMSO) to a concentration of 1 x 10^6 live cells/ml of freezing media. Aliquot 500μ l (0.5ml) freezing media/cell mixture per tube.
- 13. After capping tubes, transfer to -80°C for 24 hours.
- 14. Transfer cryovials to liquid N2 for long term storage. (Note: One cryovial should be thawed to test the viability of the frozen Lot. Expand it for 2-3 days and then subject it to pathogen testing. This will validate the quality of your frozen Lot for future experiments.)

