KromaTiD

Document Code: FORM-0068A

Revision: 3.0

Document Type:
FORM

Date Effective: 08-27-21

TITLE: Kromatid Chromosome Analysis Report
I. ASSAY INFORMATION

Project Quote \#	Q200401
Specimen Type	iPSCs
Body Site	N/A
Sample ID	INK2J00002R-B11 (S007588)
Cell Line Gender	Male
Passage number (or N/A)	N/A
Study Objective	The purpose of this study is to characterize iPS cells grown in vitro, designated for cytogenetic analysis.

II. Cell Maintenance

Culture vessel	N / A
Media	N / A
Density (estimated)	N / A
Culture atmosphere	N / A
Culture maintenance	

Culture	N/A
Maintenance	
Process	
Description	
	Analyst Initial/Date: N/A

III. Culture Harvest

Culture Harvest Process Description	
	Analyst Initial/Date: N/A

Material	Usage information
Harvest materials (trypsin, EDTA, etc.)	Type: N/a LN/ Exp. Date: N/a Colcemid
	LN/ Exp. Date: N/a Concentration: $0.1 ~ \mu \mathrm{~g} / \mathrm{ml}(10 ~ \mu / / \mathrm{ml})$ Incubation time: N / a
Hypotonic	LN/ Exp. Date: N/a Solution: N/a Incubation time:
Fixative	Prepared Fresh, day-of-use

IV. Staining

Solution Type	Lot\#	Exp. Date	Solution Type	Lot\#	Exp. Date
Isoton II Diluent	4710610	$07 / 12 / 22$	Wright Stain	$210817-$ Wright	$08 / 17 / 22$
Pancreatin	SLCD9444	$01 / 11 / 23$	Gurr Buffer	$220222-$-Gurr	$03 / 24 / 22$
FBS	$20 J 481$	$01 / 06 / 24$	Permount	$210201-01$	$02 / 1 / 23$

Process	
Description	A sample of fixed cells INK2J00002R-B11 (KromaTiD Sample ID S007588) was received at KromaTiD on 3-15-22. The fixed cells were washed twice with fixative (prepared fresh day-of-use) and the O.D. was adjusted. Drops of the final cell suspension were placed on clean slides and aged for 60 minutes at $90^{\circ} \mathrm{C}$. Slides were digested in a pancreatin solution with Isoton II diluent. The enzymatic reaction was then stopped by rinsing with FBS, followed by application of a stain solution (3:1 Wright/Gurr buffer) which was poured on the slides so that it covered the entire surface. After staining for up to 1 minute, slides were washed with de- ionized water for 1-5 seconds and air dried. The mounting medium Permount was applied to the slides, a coverslip was placed on the slide and the slides were scanned on the microscope.
	Analyst Initial/Date: MV 3/22/22

Test Description:

G-banding with trypsin treatment and Giemsa stain (GTG-banding) is used in cytogenetics to produce a visible karyotype by staining metaphase chromosomes. This technique allows each chromosome to be distinguished by its characteristic banding pattern. G-banding is useful in assessing structural abnormalities in individual chromosomes, as well as extra or missing chromosomes within a cell. Industry-standard protocols for scoring and describing results were used (ISCN 2016: An International System for Human Cytogenomic Nomenclature).
V. RESULTS

Cells Counted	20	Total Karyograms	2
Cells Analyzed	20	Average Band Resolution	450
Image File Location	Jax Gbanding_S007588		

5.1 Chromosome Count per 20 Metaphases

Of the 20 cells counted, 19 contained 46 chromosomes (95%). Cells containing greater than 57 chromosomes are recorded as polyploid. The polyploid frequency was 0%, based on the metaphases counted.

5.2 Chromosome Aberration Data

The chromosome aberration data via G-band for the 20 metaphases examined is summarized in attached case report cell list. 1 chromosome aberration was found in the 20 cells analyzed with 5\% of the cells aberrant.
*Note: Cells with aneuploidy gain/loss were found to be non-clonal, and therefore not included in the aberration data below.

Tech Summary		Additional Comments
Karyotype	$46, \mathrm{XY}[20]$	Normal Male Karyotype
Cells Analyzed	20	
Normal Cells	19	Random loss/gain cells normalized
Abnormal Cells	1	
Aberration Type	chtb(1p)	
Aberration \%	5%	

5.3. INTERPRETATION/ SIGNIFICANCE:

G-banded chromosome analysis of metaphase cells designated as INK2J00002R-B11 (KromaTiD Sample ID S007588) show a normal male karyotype 46,XY[20].
The other abnormalities/aberrations detected were non-clonal and were designated as low-level mosaicism or random gain/loss.
5.4 REPRESENTATIVE IMAGES:

Cell Results: Karyotyped: 46,XY

Cell Notes:

Revision: 3.0
Date Effective: 08-27-21

Cell Results: Karyotyped: 46,XY

Cell Notes:

Label - Slide/Cell: S007588-1/98
$\mathrm{X}, \mathrm{Y}: \quad 9.3,36.3$

Report Date: Thursday, March 31, 2022

Limitations: This assay allows for microscopic visualization of numerical and structural chromosome abnormalities. The size of structural abnormality that can be detected is $>3-10 M b$, dependent upon the G-band resolution obtained from this specimen. For the purposes of this report, band level is defined as the number of G-bands per haploid genome. Detection of heterogeneity of clonal cell populations in this specimen is limited by the number of metaphase cells analyzed, documented above as "number of cells counted". Results are for Research Use Only and should not be used for clinical purposes.

Completed By/Date:
Michael Vemich
Michael Vernich
Cytogenetics Associate II

Approved By/Date:

Greg Husar
Gregory Husar
Operations Manager

Table 1: Chromosome Analysis for sample INK2J00002R-B11 (S007588). 20 cells were analyzed.
\# Slide
Slide: Name: 1 Label: S007588

1	1	4	12.78×11.78	Karyotyped: 46,XY	Karyotyped	skeables
2	1	23	6.18×18.91	Karyotyped: 46,XY	Karyotyped	skeables
3	1	37	10.28×22.71	Karyotyped: 46,XY	Karyotyped	skeables
4	1	56	15.58×25.97	Karyotyped: 46,XY	Karyotyped	skeables
5	1	58	14.20×30.33	Karyotyped: 46,XY	Karyotyped	skeables
6	1	64	14.52×31.60	Karyotyped: 46,XY, chtb(1p)	Karyotyped	skeables
7	1	69	12.83×33.21	Karyotyped: 46,XY	Karyotyped	skeables
8	1	71	8.79×33.17	Karyotyped: 46,XY	Karyotyped	skeables
9	1	74	7.46×32.39	Karyotyped: 46,XY	Karyotyped	skeables
10	1	81	7.20×33.57	Karyotyped: 46,XY	Karyotyped	skeables
11	1	82	7.33×34.71	Karyotyped: 46,XY	Karyotyped	skeables
12	1	83	8.78×33.65	Karyotyped: 46,XY	Karyotyped	skeables
13	1	95	4.58×35.25	Karyotyped: 45,XY, -3	Karyotyped	skeables
14	1	98	9.32×36.27	Karyotyped: 46,XY	Karyotyped	skeables
15	1	106	6.98×38.53	Karyotyped: 46,XY	Karyotyped	skeables
16	1	113	11.26×39.61	Karyotyped: 46,XY	Karyotyped	skeables
17	1	115	11.96×40.11	Karyotyped: 46,XY	Karyotyped	skeables
18	1	123	9.74×42.71	Karyotyped: 46,XY	Karyotyped	skeables
19	1	131	8.42×44.58	Karyotyped: 46,XY	Karyotyped	skeables
20	1	133	5.01×43.24	Karyotyped: 46,XY	Karyotyped	skeables

