# EVERATION GENERATION

**BLAST Tutorials** 





# **BLAST Tutorials**

Use the following menu to link to a specific topic within this tutorial series:

- A. Identifying a gene
- B. Comparing two or more DNA sequences using BLASTn
- C. Comparing two or more protein sequences using BLASTp
- D. <u>Tutorial Sequences</u>

# A. Identifying a gene

This section of the tutorial explains how to take an unknown sequence and identify from which organism and where in the genome it originates.

- 1. Navigate to <u>BLAST</u> hosted by the National Center for Biotechnology Information (NCBI).
- 2. Select "Nucleotide BLAST" under Web BLAST.
- 3. There is a large box under "Enter Query Sequence." Copy and paste the Unknown DNA Sequence from the <u>Tutorial Sequences</u> below into the "Enter Query Sequence" box.

| Enter accession r | number(s) gi(s) or FASTA sequence(s) 2 Clear       | Query subrance    |
|-------------------|----------------------------------------------------|-------------------|
|                   | inimorital, gital, or i no in acqueiloc(a) 🕤 Clear | action y Subrange |
|                   |                                                    | From              |
|                   |                                                    |                   |
|                   | ,                                                  | То                |
| Or, upload file   | Choose File No file chosen                         |                   |
| Job Title         |                                                    |                   |
| SOD THE           |                                                    |                   |
|                   | Enter a descriptive title for your BLAST search 😯  |                   |

When entering sequences into BLAST, copy and paste all the text including the description line, which starts with a ">" sign.

| Enter accession n                                                              | umber(s), gi(s), or FASTA sequence(s) 😯 <u>Clear</u>                                                                                                    | Query subrange 🕜        |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| >Unknown gene<br>atggagccggcgggg<br>gggtagagggggggggggg<br>gccgatccaggtcatgatg | jagcagcalggagccttcggctgactggctggccacggccccgg<br>cgctgctggaggcggggggcgctgcccacgcaccgaatagttacggtc<br>atgggcagcaccgaatggcggggggcgctgctgctgctgctcccacgcacg | ggtc<br>ggag<br>ccca To |
|                                                                                |                                                                                                                                                         |                         |

4. Leave all the settings as is and scroll down and hit the blue BLAST button.



- 5. The page will refresh several times while the alignment job runs. It should take about 30 seconds to load the result.
- 6. Once the results load, you will see a box labeled "Sequences producing significant alignments" listing genes and organisms that have sequences that match this one.
- 7. For this alignment, you should notice that the top hit is the "Homo sapiens cyclin dependent kinase inhibitor 2A (CDKN2A)," which is a human gene that is frequently mutated in melanoma skin cancer among other cancers. There is a 100% match to this gene, as indicated by the entry in the "percent identity" column.

| S | equences producing significant alignments                                              | Downloa         | ad ~         | New            | Select         | t colun    | nns ~         |
|---|----------------------------------------------------------------------------------------|-----------------|--------------|----------------|----------------|------------|---------------|
| C | Select all 100 sequences selected                                                      | GenBa           | nk <u>C</u>  | Graphic        | <u>cs Di</u>   | istance    | tree of re    |
|   | Description                                                                            | Scientific Name | Max<br>Score | Total<br>Score | Query<br>Cover | E<br>value | Per.<br>Ident |
| 5 | Homo sapiens cyclin dependent kinase inhibitor 2A (CDKN2A), transcript variant 1, mRNA | Homo sapiens    | 870          | 870            | 100%           | 0.0        | 100.00%       |

# B. Comparing more than two DNA sequences using BLASTn

This section of the tutorial will explain how to compare and identify variation between two or more DNA sequences. See also, the BLAST Tutorial Series: Comparing two or more DNA sequences video.

- Navigate to <u>BLAST</u> hosted by the National Center for Biotechnology Information (NCBI).
- 2. Select "Nucleotide BLAST" under Web BLAST.
- 3. Check the box "Align two or more sequences" to load a second query box "Enter Subject Sequence."

|                 |                            | Clear | Query subrange 😗 |
|-----------------|----------------------------|-------|------------------|
|                 |                            |       | From             |
|                 |                            |       | То               |
| Or, upload file | Choose File No file chosen | 0     |                  |
| Job Title       |                            |       |                  |

To identify variation in different sequences, those sequences must be compared to a standard sequence called a *reference sequence*. This standard sequence is a point of reference for a specific gene and will indicate if variation in a gene sequence has occurred.

4. There is a large box under "Enter Query Sequence." Copy and paste the DNA Reference Sequence from the <u>Tutorial Sequences</u> below into the "Enter Query Sequence" box. Make sure to copy and paste the entire sequence including the description line starting with ">" that comes directly before the DNA sequence.

| Enter Query S                               | equence                                                      |                  |
|---------------------------------------------|--------------------------------------------------------------|------------------|
| Enter accession nu                          | ımber(s), gi(s), or FASTA sequence(s) 😯 Clear                | Query subrange 😯 |
| >DNA Reference Seq<br>atggagccggcggcgggg    | uence<br>agcagcatggagccttcggctgactggctggccacggccgggcccggggtc | From             |
| gggtagaggaggtgcgggg<br>gccgatccaggtcatgatga | cgctgctggaggcgggggggggggggggggggggggggg                      | То               |
| Or, upload file                             | Choose File No file chosen                                   |                  |
| Job Title                                   | DNA Reference Sequence                                       |                  |
|                                             | Enter a descriptive title for your BLAST search 😯            |                  |
| Align two or more                           | e sequences 😯                                                |                  |

5. Then copy and paste the sequences DNA Sequence 1, DNA Sequence 2, and DNA Sequence 3 from the <u>Tutorial Sequences</u> found under "Other DNA Sequences" below into the box labeled "Enter Subject Sequence." You can simply copy and paste all three sequences at once staring with the > sign proceeding the first sequence. Leaving the sequence description lines will help you distinguish between the different sequences once they have been aligned to the reference sequence.

| Enter Subject Sequence                                                                                                |       |                    |
|-----------------------------------------------------------------------------------------------------------------------|-------|--------------------|
| Enter accession number(s), gi(s), or FASTA sequence(s) 3                                                              | Clear | Subject subrange 🕜 |
| >DNA Sequence 1<br>atggagccggcgggggggggggggggggggggggggggg                                                            |       | From               |
| gccgatccaggtcatgatgatgatgggcagcgccgagtgggggggctgctgctgctgctgctgccacaggcgggagccca<br>actgcgccgacccggccactctcacccgacccg |       | То                 |
| >DNA Sequence 2<br>atggagccggcgggggggggggggggggggggggggggg                                                            |       |                    |
| Or, upload file Choose File No file chosen                                                                            |       | 0                  |

6. Keeping all the other settings as is, use the BLAST button to compare the sequences and wait for the page to refresh with results.



 Once the results load, the "Descriptions" tab should include three alignments, one for DNA Sequence 1, one for DNA Sequence 2, and one for DNA Sequence 3 each compared to the DNA Reference Sequence.

| Descript | tions                                                                               | Graphic Summary | Alignments |                 |  |              |                |                |            |               |             |             |
|----------|-------------------------------------------------------------------------------------|-----------------|------------|-----------------|--|--------------|----------------|----------------|------------|---------------|-------------|-------------|
| Sequen   | Sequences producing significant alignments Download × Select columns × Show 100 • 0 |                 |            |                 |  |              |                |                |            |               |             |             |
| 🗹 selec  | Select all 3 sequences selected Graphics Distance tree of results MSA Viewer        |                 |            |                 |  |              |                |                |            |               |             |             |
|          |                                                                                     | Description     |            | Scientific Name |  | Max<br>Score | Total<br>Score | Query<br>Cover | E<br>value | Per.<br>Ident | Acc.<br>Len | Accession   |
| DNA S    | Sequence                                                                            | 1               |            |                 |  | 870          | 870            | 100%           | 0.0        | 100.00%       | 471         | Query_62939 |
|          | Sequence                                                                            | 3               |            |                 |  | 865          | 865            | 100%           | 0.0        | 99.79%        | 471         | Query_62941 |
|          | Sequence                                                                            | 2               |            |                 |  | 841          | 841            | 100%           | 0.0        | 98.74%        | 476         | Query_62940 |
|          |                                                                                     |                 |            |                 |  |              |                |                |            |               |             |             |

The column labeled "Query Cover" provides an indication of the length of each subject sequence compared to the reference sequence. 100% coverage indicates that the subject sequence spans the entire length of the **DNA Reference Sequence**. The column labeled "Per. Ident" stands for *percent identity*, which is the percentage of the nucleotides that are the same between the two sequences. 100% indicates that at each position of the alignment, the nucleotide in the subject sequence is identical to the reference sequence. A percent identity below 100% indicates that there are differences between the two sequences meaning there could be base exchanges (a different base a position), deletions, or insertions within the subject sequence.

- 8. To see the comparison of the sequences themselves, click on the "Alignments" tab.
- The easiest way to visualize the alignment of the sequences is to select "Pairwise with dots for identities" as the "Alignment view."



In this view, each subject sequence is aligned to the **Reference Sequence** individually. The specific subject for each comparison is indicated at the top of the alignment. The numbers at the start and end of each line represent the nucleotide number in the sequence starting with 1 on the first line.

| DNA Sequence<br>Sequence ID: Que | e1<br>ry_62939 ∟ | ength: 471 Number of | Matches: 1        |                     |         |
|----------------------------------|------------------|----------------------|-------------------|---------------------|---------|
| Range 1: 1 to 471                | Graphics         |                      |                   | V Next Match        | Previou |
| Score                            | Expect           | Identities           | Gaps<br>0/471(0%) | Strand<br>Plus/Plus | _       |

Any bases that are the same between the subject sequence (either DNA Sequence 1, 2, or 3) and the query sequence (DNA Reference Sequence) are represented by a dot. Those that differ are listed as a red letter or a dash.

In this example, DNA Sequence 1 does not have any differences from the DNA Reference Sequence, but DNA Sequences 2 and 3 have differences.

In the alignment with **DNA Sequence 3**, there is a red T in position 353 in the sequence. This indicates that there is a single base substitution from a C in the **Reference Sequence** to a T in **DNA Sequence 3**.

| Query | 301 | GGGGCGCGGCTGGACGTGCGCGATGCCTGGGGCCGTCTGCCCGTGGACCTGGCTGAGGAG | 360 |
|-------|-----|--------------------------------------------------------------|-----|
| Sbjct | 301 | <b>T</b>                                                     | 360 |

In the alignment with DNA Sequence 2, there is also a red T in position 353 in the sequence. This indicates that there is a single base substitution from a C in the DNA Reference Sequence to a T in DNA Sequence 2. There is also a group of red Ts in the subject sequence and dashes in the query sequence. This indicates that there is an insertion of DNA bases in DNA Sequence 2 that are not present in the DNA Reference Sequence and the dashes are place holders for the missing nucleotides. Had the dashes been in the subject sequence, this would indicate a deletion in that sequence and the dashes represent missing nucleotides that are present in the DNA Reference Sequence.

| Query              | 181 | GAGCTGCTGCTGCTCCACGGCGCGGAGCCCCACCTGCGCCCGACCCCGCCACTCTCA    | 235 |
|--------------------|-----|--------------------------------------------------------------|-----|
| <mark>Sbjct</mark> | 181 |                                                              | 240 |
| Query              | 236 | CCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGGACACGCTGGTGGTGCTGCACC | 295 |
| Sbjct              | 241 |                                                              | 300 |
| Query              | 296 | GGGCCGGGGCGCGGCTGGACGTGCGCGATGCCTGGGGCCGTCTGCCCGTGGACCTGGCTG | 355 |
| <mark>Sbjct</mark> | 301 |                                                              | 360 |

# C. Comparing more than two protein sequences using BLASTp

This tutorial will explain how to compare and identify variation between two or more protein sequences. See also, the <u>BLAST Tutorial Series: Comparing two or more protein sequences</u> video.

- Navigate to <u>BLAST</u> hosted by the National Center for Biotechnology Information (NCBI).
- 2. Select "Protein BLAST" under Web BLAST.
- Check the box "Align two or more sequences" to load a second query box "Enter Subject Sequence."

| Enter accession nu | umber(s), gi(s), or FASTA sequence(s) ? <u>Clear</u> | Query subrange 😯 |
|--------------------|------------------------------------------------------|------------------|
|                    |                                                      | From             |
|                    |                                                      | То               |
| Or, upload file    | Choose File No file chosen                           |                  |
|                    |                                                      |                  |
| Job Title          |                                                      |                  |

To identify variation in different sequences, those sequences must be compared to a standard sequence called a *reference sequence*. This standard sequence is a point of reference for a specific gene and will indicate if variation in a protein sequence has occurred.

4. There is a large box under "Enter Query Sequence." Copy and paste the Protein Reference Sequence from the <u>Tutorial Sequences</u> below into the "Enter Query Sequence" box. Make sure to copy and paste the entire sequence including the description line starting with ">" that comes directly before the DNA sequence.

| Enter Query Se                               | equence                                                                                                          |                  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------|
| Enter accession nu                           | mber(s), gi(s), or FASTA sequence(s) 🝞 Clear                                                                     | Query subrange 😯 |
| >Protein Reference Se<br>mlgtvkmeghetsdwnsyy | equence<br>yadtqeayssvpvsnmnsglgsmnsmntymtmntmttsgnmtpasfnms                                                     | From             |
| yanpglgaglspgavagmp<br>mnpcmspmayapsnlgrs    | ogsagamnsmtaagvtamgtalspsgmgamgaqqaasmnglgpyaaa<br>sraggggdaktfkrsyphakppysyislitmaiqqapskmltlseiyqwimdlfp<br>// | То               |
| Or, upload file                              | Choose File No file chosen ?                                                                                     |                  |
| Job Title                                    | Protein Reference Sequence                                                                                       |                  |
|                                              | Enter a descriptive title for your BLAST search 😯                                                                |                  |
| Align two or more                            | e sequences 😮                                                                                                    |                  |

5. Then copy and paste the sequences Protein Sequence 1 and Protein Sequence 2 from the <u>Tutorial Sequences</u> found under "Other Protein Sequences" below into the box labeled "Enter Subject Sequence." You can simply copy and paste all three sequences at once staring with the > sign proceeding the first sequence. Leaving the sequence description lines will help you distinguish between the two sequences once they have been aligned to the reference sequence.

| Protein Sequence 1<br>Ilgtvkmeghetsdwnsyyadtqeayssvpvsnmnsglgsmnsmntymtmntmttsgnmtpasfnms                                                                                                                                                                                                          | _  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| anpglgaglspgavagmpggsagamnsmtaagvtamgtalspsgmgamgaqqaasmnglgpyaaa<br>nnpcmspmayapsnlgrsraggggdaktfkrsyphakppysyisilitmaiqqapskmltlseiyqwimdlfp<br>yrqnqqrwqnsirhslsfndcfvkvarspdkpgkgsywtlrpdsgnmfengcylrrqkrfkcekqpgaggg<br>gsgsgsakggpesrkdpsgasnpsadsplhrgvhgktgqlegapapgpaaspqtldhsgatatggasel | To |
| tpasstappissgpgalasvpashpahglaphesqlhlkgdphysfnhpfsinnlmssseqqhkldfkayeq<br>lqyspygstlpaslplgsasvttrspiepsalepayyqgvysrpvlnts<br>Protein Sequence 2<br>nlgtvkmeghetsdwnsyyadtqeayssvpvsnmnsglgsmnsmntymtmntmttsgnmtpasfnms<br>appglaadspaavagmoogsagampsmtaagvtamptalspsgmgamaagaasempglgpvaaa     |    |

6. Keeping all the other settings as is, use the BLAST button to compare the sequences and wait for the page to refresh with results.



 Once the results load, the "Descriptions" tab should include two alignments, one for Protein Sequence 1 and one for Protein Sequence 2 compared to the Protein Reference Sequence.

| Descriptions  | Graphic Summary        | Alignments      |          |                                                       |                               |            |               |             |           |            |
|---------------|------------------------|-----------------|----------|-------------------------------------------------------|-------------------------------|------------|---------------|-------------|-----------|------------|
| Sequences p   | oducing significant al | lignments       | Down     | load ~                                                | Select columns ≚ Show 100 ♥ 👔 |            |               |             |           | 0 🗸 📀      |
| Select all    | e sequences selected   |                 | Graphics | Distance tree of results Multiple alignment MSA Viewe |                               |            |               |             |           |            |
|               | Description            | Scientific Name | N<br>St  | lax Tota                                              | e Query                       | E<br>value | Per.<br>Ident | Acc.<br>Len | Accession |            |
| Protein Seque | ence 1                 |                 |          | ę                                                     | 54 954                        | 100%       | 0.0           | 99.79%      | 472       | Query_1370 |
| Protein Seque | ence 2                 |                 |          | ç                                                     | 50 950                        | 100%       | 0.0           | 99.79%      | 471       | Query_1371 |
|               |                        |                 |          |                                                       |                               |            |               |             |           |            |

The column labeled "Query Cover" provides an indication of the length of each subject sequence compared to the reference sequence. 100% coverage indicates that the subject sequence spans the entire length of the **Reference Sequence**. The column labeled "Per. Ident" stands for percent identity, which is the percentage of the amino acids that are the same between the two sequences. 100% indicates that at each position of the alignment, the amino acid in the subject sequence is identical to the reference sequence. A percent identity below 100% indicates that there are differences between the two sequences meaning there could be amino acid substitutions (a different amino acid in one position) as well as deletions or insertions of amino acids within the subject sequence.

- 8. To see the comparison of the sequences themselves, click on the "Alignments" tab.
- 9. The easiest way to visualize the alignment of the sequences is to select "Pairwise with dots for identities" as the "Alignment view."



In this view, each subject sequence is aligned to the **Protein Reference Sequence** individually. The specific subject for each comparison is indicated at the top of the alignment. The numbers at the start and end of each line represent the amino acid number in the sequence starting with 1 on the first line.

| ▲ Download ∨            | Graphics                                          |                            |                           |                   |               |
|-------------------------|---------------------------------------------------|----------------------------|---------------------------|-------------------|---------------|
| Protein Sequence ID: C  | uence 1<br>uery_1370 Length: 472 Number of        | f Matches: 1               |                           |                   |               |
| Range 1: 1 to 4         | 72 Graphics                                       |                            | <b>V</b> <u>N</u>         | lext Match 🔺      | Previous Mate |
| Score<br>954 bits(2465) | Expect Method<br>0.0 Compositional matrix adjust. | Identities<br>471/472(99%) | Positives<br>471/472(99%) | Gaps<br>0/472(0%) |               |
| Query 1<br>Sbjct 1      | MLGTVKMEGHETSDWNSYYADTQEAYSS                      | /PVSNMNSGLGSM              | INSMNTYMTMNT              | MTTSGNMT          | 60<br>60      |

Any amino acids that are the same between the subject sequence (either Protein Sequence 1 or 2) and the query sequence (Protein Reference Sequence) are represented by a dot. Those that differ are listed as a red letter or a dash.

In this example, both **Protein Sequences 2** and **3** have differences from the reference.

In the alignment with **Protein Sequence 1**, there is a red R in position 247 in the sequence. This indicates that there is a single amino acid substitution from a H (histidine) in the **Protein Reference Sequence** to an R (arginine) in **Protein Sequence 1**.

| Query | 241 | GSYWTLHPDSGNMFENGCYLRRQKRFKCEKQPGAGGGGGGSGSGSGAKGGPESRKDPSGA | 300 |
|-------|-----|--------------------------------------------------------------|-----|
| Sbjct | 241 | <b>R</b>                                                     | 300 |

In the alignment with **Protein Sequence 2**, there is a dash in the subject sequence. This indicates that there is a deletion in **Protein Sequence 2** for an amino acid that is present in the **Protein Reference Sequence**. A dash is a place holder for missing amino acids. Had the dash been in the query sequence, this would indicate an insertion in the subject protein sequence and the dash represents an additional amino acid that is not present in the **Protein Reference Sequence**.

| Query | 241 | GSYWTLHPDSGNMFENGCYLRRQKRFKCEKQPGAGGGGGSGSGSGAKGGPESRKDPSGA | 300 |
|-------|-----|-------------------------------------------------------------|-----|
| Sbjct | 241 |                                                             | 299 |

### **D.** Tutorial Sequences

### **Unknown Gene Sequence**

### >Unknown gene

### **DNA Reference Sequence**

### >DNA Reference Sequence

### **Other DNA Sequences**

### >DNA Sequence 1

### >DNA Sequence 2

>DNA Sequence 3

### **Protein Reference Sequence**

### >Protein Reference Sequence

Mlgtvkmeghetsdwnsyyadtqeayssvpvsnmnsglgsmnsmntymtmntmttsgnmtpasfnmsyan pglgaglspgavagmpggsagamnsmtaagvtamgtalspsgmgamgaqqaasmnglgpyaaamnpcmsp mayapsnlgrsraggggdaktfkrsyphakppysyislitmaiqqapskmltlseiyqwimdlfpyyrqn qqrwqnsirhslsfndcfvkvarspdkpgkgsywtlhpdsgnmfengcylrrqkrfkcekqpgagggggs gsggsgakggpesrkdpsgasnpsadsplhrgvhgktgqlegapapgpaaspqtldhsgatatggaselk tpasstappissgpgalasvpashpahglaphesqlhlkgdphysfnhpfsinnlmssseqqhkldfkay eqalqyspygstlpaslplgsasvttrspiepsalepayyqgvysrpvlnts

# **Other Protein Sequences**

### >Protein Sequence 1

mlgtvkmeghetsdwnsyyadtqeayssvpvsnmnsglgsmnsmntymtmntmttsgnmtpasfnmsyan pglgaglspgavagmpggsagamnsmtaagvtamgtalspsgmgamgaqqaasmnglgpyaaamnpcmsp mayapsnlgrsraggggdaktfkrsyphakppysyislitmaiqqapskmltlseiyqwimdlfpyyrqn qqrwqnsirhslsfndcfvkvarspdkpgkgsywtlrpdsgnmfengcylrrqkrfkcekqpgagggggs gsggsgakggpesrkdpsgasnpsadsplhrgvhgktgqlegapapgpaaspqtldhsgatatggaselk tpasstappissgpgalasvpashpahglaphesqlhlkgdphysfnhpfsinnlmssseqqhkldfkay eqalqyspygstlpaslplgsasvttrspiepsalepayyqgvysrpvlnts

### >Protein Sequence 2

mlgtvkmeghetsdwnsyyadtqeayssvpvsnmnsglgsmnsmntymtmntmttsgnmtpasfnmsyan pglgaglspgavagmpggsagamnsmtaagvtamgtalspsgmgamgaqqaasmnglgpyaaamnpcmsp mayapsnlgrsraggggdaktfkrsyphakppysyislitmaiqqapskmltlseiyqwimdlfpyyrqn qqrwqnsirhslsfndcfvkvarspdkpgkgsywtlhdsgnmfengcylrrqkrfkcekqpgagggggg sggsgakggpesrkdpsgasnpsadsplhrgvhgktgqlegapapgpaaspqtldhsgatatggaselkt passtappissgpgalasvpashpahglaphesqlhlkgdphysfnhpfsinnlmssseqqhkldfkaye qalqyspygstlpaslplgsasvttrspiepsalepayyqgvysrpvlnts